跳到主要內容

發表文章

目前顯示的是 4月, 2017的文章

[MV] 我心中尚未崩壞的地方

有天發現自己竟然成了片場裡的小丑。 小丑幸運的走上了舞台還發現了光。 但光是短暫會熄滅的,只能不停的尋找更大更亮的光。 小丑找到越來越亮的光,直到被強光灼傷.... 受傷的小丑又找到了一種淡淡的光,卻還是熄滅了。 最後小丑發現其實即使沒有光,只要他想表演,哪裡就是他的舞台。 小丑是在追求光,還是在尋找舞台?

Google Cloud OnBoard 2017 Taipei

Google Cloud Platform Per minute billing Sustain pricing: 25% 自動提供折扣 (20% each 25% usage) Compute Engine: customize CPU and memory (add more memory) Committed discount (1 year or 3 year) CloudNative use cases Free trial 300 USD (1 year valid) IAM Google Account / Service Account / Google Groups / G suites accounts Organization? App Engine Similar to AWS BeansTalk or AWS Container Service  Cloud Shell / edit / preview (Very nice integration with browser!!)  Standard environment / Flexible environment (provides ssh)  PaaS, auto scale, container Eclipse wizard integration Cloud Datastore Similar to AWS DynamoDB? Encryption / Sharding / Replication NoSQL  Auto scaling Billing Free 28 instance hour? / cost calculator  Cloud Storage Similar with AWS S3 (bucket / region / storage type by access frequency) < 5TB BLOB GB / per month (granular: minute) Multi Regional 0.026, Regional Nearline(1 time / month)0.01, Coldline (1 ...

AWS Machine Learning Workshop

Machine Learning Concepts Apply AWS ML to problems you have existing samples of actual answers For example, to predict if new email is spam or not, you need to collect examples of spam and non-spam. Binary classification (true / false) Is spam or not spam, churn, will customer accept campaign? Multiclass classification (one of more than two outcomes) Regression (numeric number) Building a Machine Learning Application Frame the core ML problems Collect, clean and prepare data Features from raw data Feed to learning algorithm to build models Use the model to generate predictions for new data Linear Models Leaning process computes one weight for each feature to form a model that can predict the target value For example, estimated target = 0.2 + 5 * age + 0.00003 * income Learning Algorithm Learn the weights of the model Loss function: penalty when estimate target provide by the model not equal exact result Optimization technique: minimize the loss (Stochastic G...