跳到主要內容

Google Cloud OnBoard 2017 Taipei

Google Cloud Platform

  • Per minute billing
  • Sustain pricing: 25% 自動提供折扣 (20% each 25% usage)
  • Compute Engine: customize CPU and memory (add more memory)
  • Committed discount (1 year or 3 year)
  • CloudNative use cases
  • Free trial 300 USD (1 year valid)

IAM

  • Google Account / Service Account / Google Groups / G suites accounts
  • Organization?

App Engine

  • Similar to AWS BeansTalk or AWS Container Service
  •  Cloud Shell / edit / preview (Very nice integration with browser!!)
  •  Standard environment / Flexible environment (provides ssh)
  •  PaaS, auto scale, container
  • Eclipse wizard integration

Cloud Datastore

  • Similar to AWS DynamoDB?
  • Encryption / Sharding / Replication
  • NoSQL 
  • Auto scaling

Billing

  • Free 28 instance hour? / cost calculator 

Cloud Storage

  • Similar with AWS S3 (bucket / region / storage type by access frequency)
  • < 5TB
  • BLOB
  • GB / per month (granular: minute)
  • Multi Regional 0.026, Regional Nearline(1 time / month)0.01, Coldline (1 time / year) 0.007

Bigtable

  • High loading read/write
  • Cloud Dataflow, Dataproc (Hadoop) integration
  • SunGard, Gmail, Google analytics

Cloud SQL

  • Similar with AWS RDS
  • MySQL 5.5 / 5.6, PostgreSQL (beta)
  • Cloud Spanner
  • Horizontally scalable
  • ACID and SQL queries, High Availability 

GKE: Container Engine

  • Kubernetes
  • Auto scaling / deployment modes (Blue/Green, Rolling Update)
  • kubctl scale / LB / expose …

Compute Engine

  • Similar to AWS EC2 but with additional customization and charging features...
  • Preemptible instance (AWS spot instance?)
  • Add template, group then add group to LB
  • Why keep mentioning pre-warm?

Google Stackdriver

  • Monitor / Trace / Logging / Report / Debugger
  • Fluentd

Lifecycle of Machine Learning model

  • Hosted TensorFlow service (!! AWS ML not provide offline SDK or framework for development)
  • Import / Export model (!! AWS ML not support this)
  • Fasten training time. (with GPU)
  • Data analyze -> clean up
  • Model might not fit the target (Asia 用餐時間 PM7 / 中東 PM9)
  • Linear Regression. Python Pandas, BQ/TnsorFlow => Predict Taxi demand from whether
  • Convolutional Neural Network => Handwriting Recognization

BigQuery

  • Datawarehouse for Analytics
  • Very interesting use case that SQL like query and see results on the fly (query duration)

Datalab

  • For data scientist
  • Very interesting use case!, Wiki style document / run python (panda) and plot chart
  • Average / RMSE 
  • Exploratory plot (whether and taxi trip count)
  • CNN => signature
  • 3 demos
  • Classification => drawing
  • Prediction => Whether and taxi trips
  • Convolution Neural Network => Handwriting reconization

Summary

  • Very similar with part of AWS services, but AWS has more complete coverage and use cases.
  • Machine Learning allow export model and based on open source TensorFlow framework
  • Billing is more flexible than AWS
  • Seems more emphasis on container use cases
  • Some special database storage, such as Cloud Spanner and BigTable, BigQuery....
  • The browser integration and UX is quite geek and interesting. (Datalab / BigQuery / Cloud Shell / Cloud Preview / In browser edit ...etc...)

References

留言

這個網誌中的熱門文章

3M UVA3000 更換濾芯紫外線燈匣

用了一年的3M濾水器提示說要換濾芯和燈匣 上 Youtube 想找教學的影片可是沒看到 UVA 3000 的 經過了一番奮戰後在這邊記錄一下 希望可以幫助後人,以免再重蹈覆轍。 Step 1. 拔掉插頭,把淨水器從牆上拿下來(基本上他是掛著而已),比較方便施工。 Step 2. 把前蓋往上拉,很容易就可以看到裡面的東西了。 Step 3. 打開後可以看到有兩個柱狀體,左邊的是燈匣,右邊的是濾芯。 Step 4. 這裡有個祕技是,這兩個柱狀體是可以往上 翻開30 度左右,這樣就可以有比較大的空間施工。 Step 4. 更換濾芯的話,柱狀體的瓶身上有箭頭,往左就是轉開,往右就是鎖緊。 Step 5. 更換燈匣的話比較麻煩一點,因為他底部是電源,頂部的右邊有個突出來的小方塊。對照淨水器上方連接處的話會有個弧形的凹槽,這是要 match 的.如果你只注意瓶身的箭頭往右鎖回去,就會造成漏水...Orz... Step 6. 把前蓋蓋回,機器掛回牆上,插插頭,開水,如果機器沒有告訴你有燈匣異常或漏水的話,就可以長按 C / UV  Reset 計數器了. 所以關鍵字就是,要往上翻 30 度,燈匣上面的小凸點要在右側,要看瓶身的 小箭頭. May it helps!

Getting start with Golang!

#Get started with Go https://talks.golang.org/2012/tutorial.slide#1 #Go for C programmers https://talks.golang.org/2012/goforc.slide#1 #Share Memory By Communicating https://blog.golang.org/share-memory-by-communicating #Codewalk: Share Memory By Communicating https://golang.org/doc/codewalk/sharemem/ #Go Concurrency Patterns: Timing out, moving on https://blog.golang.org/go-concurrency-patterns-timing-out-and #Go Language for Ops and Site Reliability Engineering https://talks.golang.org/2013/go-sreops.slide#1 #Go Dynamic Tools https://talks.golang.org/2015/dynamic-tools.slide#1 #Program your next server in Go https://talks.golang.org/2016/applicative.slide#1 #HTTP/2 Server Push https://blog.golang.org/h2push #gRPC Basics - Go http://www.grpc.io/docs/tutorials/basic/go.html #Go talks https://talks.golang.org/